Solutions of Superlinear Sturm–Liouville Problems in Banach Spaces
نویسندگان
چکیده
منابع مشابه
On the Existence and Convergence of Approximate Solutions for Equilibrium Problems in Banach Spaces
We introduce and study a new class of auxiliary problems for solving the equilibrium problem in Banach spaces. Not only the existence of approximate solutions of the equilibrium problem is proven, but also the strong convergence of approximate solutions to an exact solution of the equilibrium problem is shown. Furthermore, we give some iterative schemes for solving some generalizedmixed variati...
متن کاملPositive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential Equations in Banach Spaces
and Applied Analysis 3 To prove our main results, for any h ∈ C J, E , we consider the Neumann boundary value problem NBVP of linear impulsive differential equation in E: −u′′ t Mu t h t , t ∈ J ′, −Δu′|t tk yk, k 1, 2, . . . , m, u′ 0 u′ 1 θ, 2.3 where M > 0, yk ∈ E, k 1, 2, . . . , m. Lemma 2.4. For any h ∈ C J, E , M > 0, and yk ∈ E, k 1, 2, . . . , m, the linear NBVP 2.3 has a unique soluti...
متن کاملA Priori Estimates of Solutions of Superlinear Problems
In this survey we consider superlinear parabolic problems which possess both blowing-up and global solutions and we study a priori estimates of global solutions.
متن کاملExistence of Solutions for -generalized Mixed Vector Equilibrium Problems in Banach Spaces
In this paper, some generalized mixed vector equilibrium problems in Banach spaces are introduced and the equivalence of two classes of -generalized mixed vector equilibrium problems is proved under suitable assumptions. By using the equivalence theorem, some results on the existence of solutions for -generalized mixed vector equilibrium problems are obtained.
متن کاملExistence of positive solutions for multi-point boundary value problems on infinite intervals in Banach spaces
{ (−1)u(x) = λp(x)f(u(x)), 0 < x < 1 u(0) = ∑m j=1 aju (ηj), u (1) = ∑m j=1 bju (ηj), i = 0, 1, . . . , n− 1 where aj , bj ∈ [0,∞), j = 1, 2, . . . ,m, with 0 < ∑m j=1 aj < 1, 0 < ∑m j=1 bj < 1, and ηj ∈ (0, 1) with 0 < η1 < η2 < . . . < ηm < 1, under certain conditions on f and p using the Krasnosel’skii fixed point theorem for certain values of λ. We use the positivity of the Green’s function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1996
ISSN: 0022-247X
DOI: 10.1006/jmaa.1996.0248